Realistic 3D coherent transfer function inverse filtering of complex fields

Abstract

We present a novel technique for three-dimensional (3D) image processing of complex fields. It consists in inverting the coherent image formation by filtering the complex spectrum with a realistic 3D coherent transfer function (CTF) of a high-NA digital holographic microscope. By combining scattering theory and signal processing, the method is demonstrated to yield the reconstruction of a scattering object field. Experimental reconstructions in phase and amplitude are presented under non-design imaging conditions. The suggested technique is best suited for an implementation in high-resolution diffraction tomography based on sample or illumination rotation.

Publication
Biomedical Optics Express, 2 (8)
M. Fatih Toy
M. Fatih Toy
Associate Professor of Electrical and Electronics Engineering

My research interests include digital holography, quantitative phase imaging, optical diffraction tomography and optical superresolution.