Parylene-based uncooled thermomechanical array

Abstract

Novel thermo-mechanical detector arrays with integrated diffraction grating for optical readout were designed and fabricated. Parylene was used as the structural material due to its high thermal isolation and mismatch properties. Calculations reveal that the NETD performance of a thermo-mechanical array using Parylene can be significantly better than SiNx based designs and offer a theoretical NETD value <10mK assuming an optical readout with a high dynamic range detector array. Finite Element simulations were performed with length of the bimaterial leg as the optimization parameter. It was observed that only a few microns of isolation leg supported 30 fps applications, leaving rest of the leg to be bimaterial and providing large thermo-mechanical deflections.

Publication
In SPIE Defense, Security, and Sensing, 2009, Proc. SPIE 7298, 72980H, Orlando, Florida, United States
Onur Ferhanoglu
Onur Ferhanoglu
Associate Professor
M. Fatih Toy
M. Fatih Toy
Associate Professor of Electrical and Electronics Engineering

My research interests include digital holography, quantitative phase imaging, optical diffraction tomography and optical superresolution.